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We study the electronic structure within a system of phase-decoupled one-dimensional superconductors
coexisting with stripe spin and charge-density-wave order. This system has a nodal Fermi surface �Fermi arc�
in the form of a hole pocket and an antinodal pseudogap. The spectral function in the antinodes is approxi-
mately particle-hole symmetric contrary to the gapped regions just outside the pocket. We find that states at the
Fermi energy are extended whereas states near the pseudogap energy have localization lengths as short as the
interstripe spacing. We consider pairing which has either local d-wave or s-wave symmetry and find similar
results in both cases, consistent with the pseudogap being an effect of local pair correlations. We suggest that
this state is a stripe-ordered caricature of the pseudogap phase in underdoped cuprates with coexisting spin-,
charge-, and pair-density-wave correlations. Lastly, we also model a superconducting state which �1� evolves
smoothly from the pseudogap state, �2� has a signature subgap peak in the density of states, and �3� has the
coherent pair density concentrated to the nodal region.
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I. INTRODUCTION

The mysterious normal-state pseudogap phase may hold
the key to understanding the origin of high-temperature su-
perconductivity in cuprate superconductors. The basic phe-
nomenology of the pseudogap state is that of a partial sup-
pression of the density of states �DOS� around the Fermi
energy leaving only a residue of the expected Fermi
surface.1,2 The gap as mapped out by angle-resolved photo-
emission �ARPES� has an angular dependence which is simi-
lar to the dx2−y2 form that is realized in the superconducting
state with the exception of a remaining partial section of
Fermi surface �so-called Fermi arc3� in the “nodal” part of
the Brillouin zone �BZ�.4 Therefore the pseudogap is “antin-
odal” in the sense that it has a maximum amplitude corre-
sponding to the maximum amplitude of the superconducting
gap. Because of these similarities and because of the low
superfluid density of these materials, it is natural to interpret
the pseudogap in terms of phase-disordered
superconductivity.5 This scenario agrees with a large Nernst
signal detected at temperatures above Tc.

6 However, the fact
that the pseudogap extends up to temperatures well above Tc
where no evidence of fluctuating superconductivity is found
seems to rule out this scenario as an explanation of the over-
all pseudogap phenomenon. Another natural candidate for
the opening of a spectral gap is generation of ordered phases,
possibly in competition with the superconducting state.

A different interpretation of the pseudogap is that it origi-
nates from a singlet-triplet gap, or spin gap, due to strong
nearest-neighbor spin correlations related to the fact that the
system is a doped Mott insulator.2 This is the resonating
valence bond �RVB� scenario.7 Along these lines it has also
been argued that stripes, which are unidirectional spin and
charge modulations, may play a key role and that the
pseudogap would be a signature of a singlet pair-correlation
gap on the hole rich stripes.8,9 Such a correlated state would
be similar to the doped RVB state but with the distinction of
being preconditioned by the charge inhomogeneity.

The existence of stripes is well established in
La2−xBaxCuO4 and La2−xSrxCuO4 �with, e.g., Nd codoping�
where both spin and charge Bragg peaks associated with the
stripe order can be clearly identified, presumably enhanced
by a structural transition in these materials.10 More recently,
however, evidence is accumulating that also other cuprates
exhibit similar stripe correlations.11–13 In this regard the uni-
versal hour-glass spin-excitation spectrum appears particu-
larly striking14 and has a simple explanation within stripe
models.15 Nevertheless, the importance and ubiquity of stripe
correlations remain controversial, partly because of the com-
plex disorder present in materials such as Bi2Sr2CaCu2O8+�
�BSCCO� which is, however, very amenable to spectroscopic
probes such as ARPES and scanning-tunneling microscopy/
scanning-tunneling spectroscopy �STM/STS�.

It is well known that ARPES finds a so-called
momentum-space dichotomy consisting of coherent �inco-
herent� nodal �antinodal� quasiparticle states in the under-
doped cuprates.4 Recent ARPES measurements have re-
vealed the presence of two gaps in momentum space: �1� an
antinodal �pseudo�gap which persists above Tc, and �2� a gap
in the nodal region which exists only at T�Tc and exhibits a
temperature dependence consistent with a standard BCS
gap.16–18 More recently Yang et al.19 found effectively two
different types of gaps in the normal state at T�Tc, a
particle-hole symmetric gap in the antinodal part of the BZ
and a gap without particle-hole symmetry in the near-nodal
region. They also found evidence for a back-bending disper-
sion in agreement with other recent work showing evidence
for a nodal pocket instead of a disconnected arc.20 Consistent
with a possible pairing origin of the antinodal gap, Kanigel et
al.21 identified the existence of particle-hole symmetric Bo-
goliubov bands in the pseudogap state.

STM experiments have consistently reported significant
nanoscale gap modulations in the superconducting state with
large-gap regions dominant in the underdoped regime where
the pseudogap is known to be significant.22–27 Using the qua-
siparticle interference �QPI� technique, recent STM measure-
ments on both BSCCO and Ca2−xNaxCuO2Cl2 have revealed
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an electronic dichotomy similar to that found by ARPES: in
the low-energy sector “conventional” dispersing quantum
interference28,29 is detected from elastic scattering of coher-
ent states near the nodal region, whereas incoherent states at
energies near the antinodal gap give rise to a reduced set of
nondispersive peaks.30–38 In real space the low-energy local
density of states �LDOS� is largely homogeneous whereas
higher bias real-space maps reveal characteristic heteroge-
neous checkerboard or locally stripelike LDOS modulations.
This data strongly suggests the presence of extended Bogo-
liubov states near the Fermi arc and quasilocalized states
near the antinodal regions.36,39 The spatially averaged DOS
evolves smoothly from the superconducting state into the
pseudogap phase above Tc,

27,38,40,41 where spatial nanoscale
�pseudo�gap variations persist.27,31 Finally recent pseudogap
low-energy QPI STM studies of underdoped BSCCO �Ref.
38� find a gapless Fermi arc and a particle-hole symmetric
antinodal gapped region in qualitative agreement with the
above-mentioned ARPES experiments.19,21

Theoretically, a stripe-ordered pseudogap state was de-
scribed in the extreme �and unrealistic� limit of decoupled
one-dimensional correlated electron liquids.42 Although such
an approach can successfully classify the possible low-
temperature phases, it cannot readily incorporate a more re-
alistic band structure in order to calculate a spectral function
that can be compared to ARPES and tunneling experiments.
However, within various approximate schemes, many calcu-
lations of the spectral distribution of a striped density wave
have been performed.43–45 Recently, these have attracted
considerable interest in the context of high magnetic field
transport measurements showing quantum oscillations possi-
bly due to severe Fermi-surface reconstruction from stripe
ordering.46–50 This interpretation rely on electronlike single-
particle properties of bands which have predominant spectral
weight in the antinodal region which seems at odds with the
existence of an antinodal pseudogap.51,52 It should also be
noted that with realistic values of the Coulomb repulsion U,
both standard mean-field theory and more sophisticated ap-
proaches seem to indicate that there is no nodal spectral
weight but only antinodal weight related to states centered on
the hole rich stripes.53

The more unsettling problem with these studies is the an-
tinodal spectral weight itself. This is expected to be a robust
feature, arising from the “stripe bands” which are the midgap
states induced by the antiphase domain walls in the antifer-
romagnetic spin texture. For finite hole doping the spectral
weight from these domain walls is antinodal for bond-
aligned stripes as we consider here, at least in mean field.
�For realistic stripe periodicity versus hole doping.� Thus,
even though there is plenty of evidence that stripe correla-
tions may be a generic feature of these materials it seems
clear that such spin-density-wave �SDW� and charge-
density-wave �CDW� correlations will not give rise to an
antinodal pseudogap.

In this work we approach the pseudogap problem by for-
mulating a noncorrelated single-particle caricature of a
striped pseudogap state by including a BCS pair term with
finite amplitude only on the hole rich stripes and which is
decoupled by phase disorder between stripes. In Hartree-
Fock theory of the Hubbard model a striped state is realized

by solving self-consistently for a collinear SDW and a CDW
with the periodicity of the former being twice the latter.54 It
is in this framework that we will introduce a pairing term
acting only in the high hole density regions of the CDW,
which is meant to mimic the actual singlet-pair correlations
below T� of a strongly correlated system.

Our main result is that such a phenomenological model
with stripe order and phase-disordered on-stripe pairing is in
fact broadly consistent with the salient spectroscopic features
found by ARPES and STM. There is an approximately
particle-hole symmetric antinodal spectral gap and a nodal
region Fermi surface �Fermi arc� in the form of a hole
pocket. In the near-nodal region, just outside the pocket, the
gap is due to SDW order and therefore not particle-hole sym-
metric. The DOS is suppressed in accordance with the anti-
nodal gap and within an energy scale corresponding to the
on-stripe pair potential. In this pseudogap state the gap is
positioned at the Fermi level and the DOS is roughly
particle-hole symmetric but may have a minimum slightly
above the Fermi energy due to the band dispersion giving the
nodal pocket. The low-energy states that make up the Fermi
surface are extended while states near the pseudogap energy
are strongly localized on the order of the interstripe spacing.
Finally, we also model a d-wave superconducting state coex-
isting with the spectral pseudogap and find a subgap peak in
the DOS which is a result of gapping the nodal arc and a
coherent pair density that is concentrated to the nodal region.

II. MODEL

We consider a tight-binding model in a static field corre-
sponding to unidirectional �striped� SDW order and a spa-
tially modulated BCS pair field which is uniform along the
stripe direction but not, in general, periodic in the direction
transverse to the stripes. We will consider only bond-
centered charge-period four stripes �spin period eight� and, in
order to reduce the number of parameters, we do not include
an explicit field that couples to the charge density.55 Here we
will choose parameters such that there is a nodal hole pocket
for realistic doping levels. In addition there will be antinodal
weight in the form of open orbits or electron pockets.

On a square lattice with nearest-neighbor hopping t, next-
nearest-neighbor hopping t�, and chemical potential � we
have

H0 = �
k��

�k�ck�,�
† ck�,� �1�

with �k� =−2t�cos�kx�+cos�ky��−4t� cos�kx�cos�ky�−�. We
will take t=1 and use t�=−0.3. To generate a SDW we in-
clude the term

HSDW = m �
x,y,�

��− 1�yV�x�nx,y,�

= m �
kx,ky,q,�

�Vqckx,ky,�
† ckx−q,ky−�,�. �2�

In the following, results are presented for bond-centered
stripes with V�x mod 8�= �0.5,0.5,−1 ,1 ,−0.5,−0.5,1 ,−1�,
giving finite Vq for q= 	� /4 and q= 	3� /4 only. The
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variation in the SDW is chosen such that the actual calcu-
lated spin density comes out with a similar variation. The
spin potential will generate a CDW which has slightly higher
hole density on the sites with aligned spin potential, which
we will refer to as the stripes.

The main purpose of the present study is to investigate the
effect on the spectral distribution from local pairing that acts
only on the stripes. For this purpose we include the following
BCS term

HBCS,d = 
d �
n,�y,y��, j=1,2

ei�n�cxj,n,y,↑
† cxj̄,n,y,↓

† − cxj,n,y,↑
† cxj,n,y�,↓

† �

+ H.c.

= 2
d �
kx,ky,q

Mq�kx,ky�ckx,ky,↑
† c−kx−q,−ky,↓

† + H.c., �3�

where �yy�� is sum over nearest neighbors along the stripe,
�n is an arbitrary phase and xj,n with j=1,2 indicate the left
�j=1� and right �j=2� legs of the bond-centered stripe n,
with n=1, . . . ,Nx /4 and Nx as the system-size transverse to
the stripe extension. The notation j̄ refers to the leg opposite
to j on the stripe, i.e., j̄=1 if j=2 and j̄=2 if j=1. Note that
the pair creation and annihilation terms are symmetrized in
real-space coordinates and consequently spin singlet. �Nev-
ertheless, as follows from symmetry considerations, in the
presence of the SDW term there will, in principle, be induced
triplet-pair correlations at finite momenta. These are a natural
consequence of the coexistence of SDW and pair
correlations.56� In Eq. �3�

Mq�kx,ky� = eiq/2Dx�q�cos�kx + q/2� − Dy�q�cos�ky�

with Dx�q�= �1 /Nx��n=1
Nx/4ei��n−q4n� and Dy�q�= �1 /Nx��n

�ei��n−q4n�+ei��n−q�4n+1��� is the Fourier transform of the local
phases for the pairing along x and y directions, respectively.
We will mainly consider the problem with quenched uncor-
related random phases for which in general all components q
of the pairing will be nonzero with a periodicity q→q
+� /2. The above expression for Mq is “d-wavelike” in the
sense that the same term defined uniformly over the system
would reduce to Mq�kx ,ky�=�q,0�cos�kx�−cos�ky��. Based on
the underlying assumption of pair correlations tied to
nearest-neighbor singlet correlations and strong on-site re-
pulsion we expect such a d-wave term to be the most realis-
tic. Nevertheless, for comparison we also study “s-wavelike”
local pairing

HBCS,s = 
s �
n,y, j=1,2

�ei�ncxj,n,y,↑
† cxj,n,y,↓

† � + H.c.

= 
s �
kx,ky,q

Dy�q�ckx,ky,↑
† c−kx−q,−ky,↓

† + H.c. �4�

with Dy�q� as above. Figure 1 shows the SDW field together
with the d-wave paired bonds in a stripe unit cell.

The model H=H0+HSDW+HBCS,� with �=d ,s has long-
range superconducting order along the stripe direction,
which is clearly not realistic even in a stripe-ordered system.
Primarily this assumption is made to be able to numerically
study large systems in the transverse direction but may be
partly motivated by the expectation of longer range pair cor-
relations along the stripes. It constitutes an interesting project

φn φn+1

FIG. 1. �Color online� Unit cell of the SDW with the arrow
length and direction proportional to the local spin together with the
local d-wave paired bonds on two stripes with individual �and gen-
erally distinct� phases �n and �n+1

FIG. 2. �Color online� Intensity plot of the spectral weight at the
Fermi energy in the first quadrant of the full BZ �units of � /a with
a the lattice spacing� for m= t /3 and �=−1.0t �left column� or �
=−1.1t �right column�. Top row ��a� and �b�� is without pairing,
middle row ��c� and �d�� with phase-disordered local d-wave pairing

d= t /4, and bottom row ��e� and �f�� with phase-disordered local
s-wave pairing 
s= t /3. Arrows in �a� and �c� indicate cuts shown in
Fig. 4. A Lorentzian broadening with width =0.01t was used. All
plots have the same absolute color scheme. Calculations are made
for a system size Nx=200 with periodic boundary conditions and
averaged over three realizations of the quenched random phases on
the charge stripes in �c�–�f�.
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to extend the present model to include more realistic stripe
disorder similar to the recent studies of Refs. 57–61.

For system size Nx the full Hamiltonian with a random
phase 0��n�2� on each stripe n=1, Nx /4 corresponds to
a 4Nx�4Nx matrix for each momentum ky �including ky +��,
giving a spectrum of Bogoliubov quasiparticles. From this
we calculate the �zero-temperature� spectral function A�k� ,��
and the corresponding DOS ����=�k�A�k� ,��. We average
the spectral function over several independent realizations of
the random phases. We present results for magnitude of the
SDW field m= t /3 and compare the cases without pairing
with d-wave pairing 
d= t /4 and with s-wave pairing 
s
= t /3. The magnitude of m is chosen such that for relevant
doping levels, say x�20%, the stripe-ordered system exhib-
its nodal spectral weight. The values of the pairing are cho-
sen to be in qualitative agreement with an experimentally
measured pseudogap 
0 which may be a large fraction of t.

III. PSEUDOGAP STATE

In the pseudogap phase, the low-energy spectral weight is
presented in Fig. 2 for the three cases of �1� no pairing �Figs.
2�a� and 2�b��, �2� local d-wave pairing �Figs. 2�c� and 2�d��,
and �3� local s-wave pairing �Figs. 2�e� and 2�f��. As seen
from Figs. 2�a� and 2�b� the stripe-ordered system without
any local pair correlations clearly exhibits antinodal spectral
weight as found previously.43,44 However, the local pairing
on the stripes removes this antinodal weight from the Fermi
surface as seen from Figs. 2�c�–2�f�. This is a main result of
this paper, local on-stripe pairing naturally gives an antinodal
gap in the spectral function. At the same time the nodal hole
pocket remains largely unaffected. Results for two different
chemical potentials are presented in Fig. 2 �compare col-
umns� showing that the nodal hole pocket grows with hole
doping as expected. The actual hole density for these simu-
lations come out to approximately 16% and 20%, respec-

FIG. 3. �Color online� Spectral weight at the
Fermi energy in the pseudogap state symmetrized
with respect to the stripe orientation. The param-
eters are identical to Figs. 2�c� and 2�d�, respec-
tively. The “arc” length grows with doping but is
in fact restricted by the Bragg planes at k=� /4
for the present case of period-eight spin stripes.

FIG. 4. �Color online� Spectral weight along the three cuts indicated by arrows in Figs. 2�a� and 2�c�. The top row �a1,a2,a3� �bottom row
�c1,c2,c3�� corresponds to the parameters used in Figs. 2�a� �Fig. 2�c��. The band in �a1� �along arrow 1 in Fig. 2�a�� is split by the local pair
potential 
d=0.25t giving a pseudogap of similar magnitude in the antinodal region as seen in �c1� �see also Fig. 7�. The cuts in the nodal
region �a2,a3,c2,c3� �along arrows 2 and 3 in Fig. 2�a�� are less affected by the pair potential and there is clearly �see, e.g., c3� a band
dispersing through the Fermi energy giving rise to the nodal hole pocket. Note the broadening as a signature of the pseudogap energy scale
in near-nodal dispersion �c2�. Energy � in units of t and with respect to the Fermi energy.
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tively, with an average hole density variation of 2% between
hole-rich �stripes� and hole-poor regions �i.e., around 10%
variation around the mean�. The spin density, ��Sx,y

z �� varies in
magnitude between approximately 0.05 on stripes and 0.13–
0.15 between stripes for these parameters.

There is, at the level of the residual Fermi surface, no
clear distinction between d- and s-wave pairings on stripes,
indicating, as we will see, that it is the on-stripe nature of the
pairing that is essential. As discussed at the end of this sec-
tion the phase disorder is essential in producing the gapless
Fermi-surface sections, a system with ordered phases will in
general only have nodal points at the Fermi energy. In the
rest of this section we analyze these results further.

As mentioned above, more realistic simulations of stripe
correlations in the cuprate materials need to incorporate the
role of quenched disorder and concomitant generation of
short-ranged stripe domains.57–61 One important result of
such disorder averaging is that the original fourfold rota-
tional symmetry of the crystal lattice is restored globally.
Within the present approach we can obtain a similar though
admittedly more rough disorder averaging by x↔y symme-
trizing our data. Performing such a symmetry operation of
the spectral weight leads to the characteristic kx↔ky sym-
metric Fermi arcs shown in Fig. 3. As opposed to �� ,��
ordering scenarios such as conventional antiferromagnetic
order or d-density wave order,62 within the present approach
the Fermi arc is not symmetric around the antiferromagnetic
zone boundary �lines connecting �	� ,0� and �0, 	��� in
agreement with recent ARPES measurements in the
pseudogap phase.19,20 In principle, there is a back side of the
hole pocket that might be detectable20 but we anticipate that
disorder will further reduce its weight.50,63

Figure 4 displays several energy versus momentum cuts
�see arrows in Figs. 2�a� and 2�c�� of the spectral intensity
further showing the effect of the disordered pair potential.
For the antinodal cut in Fig. 4c1 a pairing gap is opened with
a clear approximate particle-hole symmetry of finite spectral
weight symmetrically around the Fermi energy. This is also
evident from fixed momentum cuts �energy-distribution
curve �EDC�� in Fig. 5c1. Note that the minimum in the EDC
curves in Fig. 5c1 remains at the Fermi level in the antinodal
region in agreement with ARPES data and contrary to most
other ordering scenarios for the pseudogap phase with non-
zero ordering vector and no pairing correlations.64 By con-
trast, the low-energy nodal weight is much less affected by
the pairing as seen by comparing, e.g., Figs. 4a3–4c3; in both
cases there is a clear signature of a band dispersing through
the Fermi energy giving rise to the nodal hole pocket. This is
also seen from the near-nodal and nodal EDCs shown in
Figs. 5c2 and 5c3, respectively. At energies below the
pseudogap scale there is a signature of the disordered pairing

-0.4 -0.2 0.2 0.4

c1

-0.4 -0.2 0.2 0.4

c2

-0.4 -0.2 0.2 0.4

c3

w

k

FIG. 5. �Color online� Fixed momentum cuts of spectral-
function intensity from Figs. 4c1–4c3.

FIG. 6. �Color online� The same nodal dispersion as in Figs. 4a2
and 4c2 plotted over a larger energy range. One sees a small flat-
tening of the low-energy dispersion and a broadened high-energy
dispersion in c2 as compared to a2 with an abrupt change as a
function of energy.

-0.4 -0.2 0.0 0.2 0.4

0

D0

w
-

FIG. 7. Density of states without �dashed� and with �solid� local
pair potential for the same parameters as in Figs. 2�a� and 2�c�,
respectively. The magnitude of the local pair potential 
d=0.25t is
clearly reflected in suppression of the low-energy DOS below a
pseudogap scale 
0	0.25t and is also seen to correspond to the
splitting of the antinodal band �Fig. 4c1� around the Fermi energy.

FIG. 8. �Color online� Nodal �solid�, antinodal �dashed�, and
total �dotted� low-energy DOS. We find an approximately particle-
hole symmetric antinodal pseudogap and a DOS consistent with a
band dispersing through the Fermi energy in the nodal region. The
nodal weight has a minimum at the edge of the nodal band where
the pocket closes. Inset shows the spectral weight �cf. Fig. 2�c�� at
the Fermi energy and the shaded �white� regions of the BZ are
integrated over to get the antinodal �nodal� DOS.
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in the form of a kink in the dispersion and a sudden severe
broadening of the spectral function. This renormalization of
the nodal dispersion in the pseudogap phase with local pair-
ing is seen more clearly in Fig. 6. Interestingly these features
of the nodal dispersion are similar to what has been reported
by ARPES measurements and discussed in the literature
mainly in terms of bosonic mode-coupling scenarios.4

In Fig. 7 we show the spatially averaged DOS in the case
with �solid� and without �dashed� pairing correlations on the
stripes. One can identify the pseudogap scale 
0	
d by the
suppressed spectral weight below this energy. The magnitude
of the pseudogap in the DOS clearly corresponds to the main
antinodal gap in the spectral function. Even though the over-
all shape of the calculated spatially averaged DOS in the
pseudogap phase consists of a suppression of spectral weight
at the Fermi level, an interesting feature is that the minimum
is not necessarily tied to the Fermi energy but shifted slightly
to positive bias ��0. This is a manifestation of the fact that
the nodal band disperses through the Fermi energy and con-
sequently will not have a minimum at �=0. This, we sug-
gest, is a telltale sign of the quasiparticle nature and band
dispersion of the nodal states. Interestingly, recent STM ex-
periments may already have measured such a shift to positive
bias in the pseudogap state.38,65 In our simulations we can
study nodal and antinodal contributions to the DOS directly
by integrating the spectral weight over only nodal or antin-
odal regions. For this purpose we define

�nodal��� = 4 �
kx=0

�

�
ky=ko

�−k0

A�k�,�� , �5�

�antinodal��� = ���� − �nodal��� , �6�

where k0 is some appropriate division between nodal and
antinodal parts of the BZ. Such a division of the low-energy
spectral weight is natural based on the disconnected nature of

the Fermi surface in the stripe ordered system as seen, e.g.,
in Figs. 2�a� and 2�c�. Figure 8 displays this division of the
DOS for the same system with phase-disordered d-wave
pairing as shown by the solid line in Fig. 7 �using k0=0.3��.
The nodal DOS is consistent with a band dispersing through
the Fermi energy with the minimum ��	0.05� correspond-
ing to closing of the hole pocket �see Fig. 4c3�. By contrast,
the antinodal DOS has the property of an approximately
particle-hole symmetric pairing gap. From this division it is
evident why the total DOS may have a minimum shifted to
positive energies. As a point of principle this is an important
example, however, in general, we do find that the DOS in the
pseudogap phase for other parameter values may have a
minimum at �=0. Even though there is a band dispersing
through the Fermi energy it may have a suppressed DOS
because it is affected by the pair potential.

To further understand the nature of the low-energy states
within this pseudogapped model system we study to what
extent the quasiparticle excitations are localized as an effect
of the disordered pair potential. To this end we calculate a
one-dimensional inverse participation ratio �IPR� since we
can only have localization transverse to the stripe extension
in the present model. Because of the local superconducting
order, the quasiparticle excitations are Bogoliubons which
give a contribution to the LDOS at both positive and nega-
tive energies. To get a measure of the extent of a state in the
transverse �x� direction we add up these contributions and
average along the stripe direction �y�

IPR� = 
�
x
��

y,�
��cx,y,��†��2 + ��cx,y,�

† �†��2�2−1
. �7�

Here the average � · � is taken with respect to the ground state
and �† is the creation operator of a quasiparticle excitation
with energy E�. A completely delocalized quasiparticle with
equal weight on all sites �actually chains along y� will have
IPR=Nx with Nx as the system size whereas a quasiparticle
which only has spectral weight on a single site will have
IPR=1. Figure 9 is a plot of IPR as a function of quasipar-
ticle energy of all states in an energy window ��0.5t for
system sizes Nx=200 and Nx=320. As seen, states around the
pseudogap energy 
d=0.25t are most localized, some with
an IPR as small as the stripe spacing and independent of
system size, indicating that the states are basically localized
on a single stripe �we expect localization length �� IPR /2�.
Strikingly, the very lowest energy states �which make up the
nodal hole pocket� all have a much larger IPR �here�70�
and are clearly only weakly affected by the stripes and the
disordered pair potential, in fact most of these states scale
with system size. This is fully consistent with the bandlike
electronic quasiparticle nature of these states as discussed
above.

The transverse localization of the antinodal states at the
pseudogap energy also makes it clear why the on-stripe pair-
ing acts so strongly on these states; these states have most of
their spectral weight on the stripes. This property of the an-
tinodal stripe states was emphasized earlier for the case of
diagonal disorder and related to the narrow band width in the
transverse stripe direction and corresponding quasi-one-
dimensional nature of these states.50,66 The role of the phase
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FIG. 9. �Color online� One-dimensional �direction transverse to
stripes� IPR as defined in Eq. �7� versus energy of quasiparticle
excitations E� for the same parameters as in Fig. 2�c� with system
size Nx=200 �small points� and Nx=320 �large points�. A large frac-
tion of the states near the pseudogap energy 
0�
d=0.25t are
strongly localized in contrast to states near the Fermi energy. Inset
is the corresponding IPR for the same parameters but with the same
pairing phase on all stripes resulting in all states being extended
Bloch states.
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disorder in the present calculations is thus twofold, �1� it acts
to localize antinodal states on stripes thus making these more
susceptible to the local pairing and �2� it causes the more
extended nodal states which have most of the spectral weight
between stripes to see only a very small spatially averaged
pair potential, thus making these states relatively insensitive
to the local pairing.

IV. SUPERCONDUCTING STATE

So far we have considered only phase-disordered pairing,
suggesting that this is a caricature of a correlated pseudogap
state with local pair correlations in the form of an on-stripe
spin gap. The most obvious extension of this model to a state
with long-range superconducting order would be to lock the
phases between stripes. Such a state would correspond to the
mean-field theory of a stripe-ordered superconductor with a
periodically modulated superconducting order parameter,
with finite components at q=0 and q= 	� /2 �not q=� for
bond-centered stripes�. We will not study this state here and
only remark that in contrast to the phase disordered pairing,
this state �for the d-wave case� has a Fermi surface consist-
ing of points at the nodes of the gap function. For the par-
ticular case considered here �with pairing only on the bond-
centered stripes� we find a nodal line at 2 cos�ky�−cos�kx�
=0 thus resulting in a point node that is shifted slightly away
from that of an actual d-wave superconductor with intact
fourfold rotational symmetry.

Another alternative, similar to that suggested in the con-
text of stripe ordered x=1 /8 doped La2−xBaxCuO4,67,68

would be to lock the phases with a � phase shift between
neighboring stripes, resulting in a striped superconductor
without a q=0 pairing component, and only finite momen-
tum pairing. Because there is no zero-momentum pairing
such models have an extended Fermi surface similar to what
we find here for the phase-disordered pairing.45

In the following, we suggest a different model for the
superconducting state which, in addition to the phase-
disordered pairing on stripes, also includes a uniform d-wave
pair potential. The motivation for studying such a state
comes from considering a glassy stripe state with static but
only short-range stripe order. In the superconducting state we
expect there may be finite momentum pair correlations de-
veloping due to the local stripe order but since phase coher-
ence is established between stripe patches with different ori-
entations only the q=0 component may order. Thus in
addition to the original model with phase-disordered on-
stripe pairing we include explicitly the homogeneous com-
ponent

HBCS,h = 
h�
k�

�cos�ky� − cos�kx��ck�↑
† c−k�↓

† + H.c. �8�

This homogeneous pairing opens a d-wave gap on the
Fermi arc. This is the actual gap of the superconducting con-
densate which will disappear in a standard mean-field fash-
ion as temperature is increased.18 As a signature of the
gapped pocket a subgap peak appears in the DOS as seen
from Fig. 10. The origin and position of this peak is set by
the transition of the contours of constant energy from sepa-

rated “bananas” at low energy28,29 to a pocket at higher en-
ergy. This is similar to what has been discussed recently in
the case of coexisting d-wave superconductivity and com-
mensurate antiferromagnetism.69 The energy of the subgap
peak, 
1, depends on band structure and is not simply lin-
early related to the magnitude of 
h as seen in Fig. 10 which
shows the evolution of the DOS with increasing magnitude

h. The pseudogap energy scale, 
0, that follows from the
phase disordered pairing is maintained even in the presence
of the homogeneous term as long as the latter is smaller in
magnitude. In contrast, a stripe-ordered state with only a ho-
mogeneous pair potential has strong coherence peaks at
twice the gap magnitude in addition to the smaller peak from
the gapped nodal pocket as seen from the thin line in Fig. 10.

Figure 11 shows the DOS spatially averaged over sites on
�off� the charge stripes only, i.e., the solid curve displays the
DOS spatially averaged over sites that contain pseudogap
bonds �see Fig. 1�. One sees a low-energy “universal” LDOS
consistent with homogeneous real-space STS spectra at low
�subgap� bias but deviations in the LDOS at higher energies
resulting in spatially modulated �in this case stripy� LDOS
real-space maps. The Fourier transform of the LDOS at a q
vector corresponding to the charge order, q=2� /4, is propor-
tional to the difference between the curves shown in Fig. 11,
and hence roughly particle-hole symmetric, even in the
pseudogap state.

Interestingly, a plot of the actual zero-momentum pair
density, �ck�↑

† c−k�↓
† �, shown in Fig. 12 reveals that this quantity

is dominated by weight in the nodal region on the hole
pocket even though we consider a d-wave gap with larger
magnitude in the antinodal regions. The reason for this is of
course the coexisting antinodal pseudogap. This is consistent
with a recent analysis of ARPES data by Kondo et al.70 in
which it was found that most of the coherent weight in the
superconducting state is near the node. Similar conclusions
about a coherent smaller gap below Tc on top of the
pseudogap have also been reached in earlier STM, ARPES,
and muon spin rotation work.16,27,71 Such a two-gap phenom-
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FIG. 10. �Color online� Density of states �curves offset for clar-
ity� for different magnitudes of homogeneous d-wave pair poten-
tials 
h=0 �solid�, 
h=0.05t �dashed�, 
h=0.1t �dotted�. The
pseudogap energy is 
0 and the energy 
1 signifies the peak from
the gapped nodal pocket in the superconducting state. The other
parameters are the same as in Fig. 2�c�: m= t /3, 
d=0.25t, and �
=−t. The thin line shows as comparison the DOS for a system with
only stripe order �m= t /3, 
d=0, �=−t� and homogeneous
d-wave potential 
h=0.15t.
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enology is naturally suggestive of a competition between a
pseudogap state of nonpairing origin and a more traditional
superconducting state. In the present model where the
pseudogap is a pairing gap we have in mind an alternative
scenario in which the pairing arises on the stripes which then
infects the extended nodal states where the actual phase-
coherent pair density is formed. Although this mechanism is
not contained in the model we may speculate that the antin-
odal spectral weight cannot couple coherently, possibly be-
cause the pseudogapped states are too localized or because
the corresponding local pair density has most of the weight
in finite-momentum components.

V. DISCUSSION

The model proposed in this paper does not fall into the
conventional separation of scenarios for the pseudogap state:
either preformed pairs or competing order. Our scenario con-
tains both an order �SDW and CDW stripes� and concomitant
local singlet pairing states which give rise to the spectro-
scopic antinodal pseudogap. Surprisingly, however, the
Fermi arc on the nodal hole pocket is unaffected by this
pseudogap mechanism irrespective of whether the local pair-
ing symmetry is of s- or d-wave type. For the ordered SDW
stripes studies here, the Fermi arc is the front side of the
nodal hole pocket. However, in a more realistic short-range
glassy phase the pocket is wiped out and replaced by a single
arc.50,63

As mentioned above, the phase disorder has negligible
effects on the extended nodal states since the effective pair-
ing potential averages to zero for these states. One can get
additional understanding of the role of phase disorder by
comparing to a stripe state with nonzero pairing and fixed
phase �i.e., �n=0 for all n in Eq. �3��. In such a phase-
ordered stripe state, the pairing leads to nodal points at the
Fermi energy, and from this respect the phase disorder is
crucial for generating a Fermi arc. The origin of this in-
creased spectral weight at the Fermi level can be traced to
the fact that significant phase differences �e.g., �-phase

shifts� between d-wave superconducting regions separated
by antiferromagnetic regions generates low-energy
states.72,73

A recent study of thermal phase fluctuations of a d-wave
superconductor also found the presence of a Fermi arc.74 In
that work too, the phase disorder is crucial for generating the
arc, but contrary to the present approach, no pocket exists in
the nodal region from SDW ordering. Even though the
pocket could be destroyed by disorder one may be able to
distinguish these scenarios for the Fermi arc by searching for
particle-hole symmetry in the near-nodal region, a property
that should be absent in that region of momentum space
within the approach presented here. �The latter in agreement
with the recent analysis of ARPES measurements by Yang et
al.19�

Experimentally it has also been found that the Fermi arc-
length scales with T /T�.75 Even though extension of the
present model to a self consistent study of finite T effects is
beyond the scope of this paper, we remark that a model of
granular antiferromagnetic and d-wave superconducting is-
lands found that the phase disorder can indeed generate a T
dependence of the Fermi arc,73 similarly to the work by Berg
and Altman.74 For the present model it is natural for the arc
length to vary inversely to the magnitude of the SDW poten-
tial which in mean field is expected to grow with decreasing
temperature. Whether or not such a variation can quantita-
tively reproduce the experimentally observed variations in
arc length with temperature remains to be explored in more
detail.76

Because the pseudogap proposed here remains at the
Fermi level �modulo a possible small shift� it explains the
smooth evolution of the spatially averaged DOS as a func-
tion of temperature from the superconducting state into the
pseudogap state.27,38,40,41 As we have shown, nodal states are
extended whereas antinodal states are localized effectively
on individual stripes in overall agreement with recent con-

-0.4 -0.2 0.0 0.2 0.4

0

w

FIG. 11. Local density of states in the superconducting state on
�solid line� and off �dashed line� a charge stripe. The parameters
used for this curve are similar to the dotted line in Fig. 10. The
overall collapse of these two curves at low-energy results in real-
space homogeneity at low tunneling bias whereas the difference in
LDOS at high energy will show up as stripes in the real-space STM
field of view.

FIG. 12. �Color online� Zero-momentum component of the pair
density for parameters identical to the dashed curve in Fig. 10; m
= t /3, 
h=0.05t, 
d=0.25t, and �=−t. The shading indicates the
deviation from zero. The weight is along the tight-binding Fermi
surface with highest intensity on the nodal pocket of the pseudogap
state. The real part is plotted, there is also a smaller imaginary part
�not shown� from the phase-disordered on-stripe pairing.
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clusions from, e.g., tunneling spectroscopy.36 The nodal band
can cause a slight shift of the DOS minimum to positive bias
in the pseudogap state similar to what has been seen by re-
cent STM measurements at T�Tc.

38,65 From the ARPES evi-
dence of a quasiparticle band dispersion through the Fermi
level together with an antinodal gap, this shift is something
we expect on general grounds, and should be explored fur-
ther by future tunneling experiments.

The superconducting q=0 condensate at T�Tc essentially
“lives on top of” the pseudogap phase and its main spectro-
scopic effect is to gap the states at the Fermi arc. The super-
conducting gap gives rise to a subgap structure at T�Tc
within the pseudogap DOS. Interestingly, subgap features in
the spatially averaged DOS which disappear above Tc have
been recently pointed out by several STM experiments of
underdoped cuprates.27,77,78 A very interesting aspect of the
present model for the superconducting state is that it natu-
rally incorporates the existence of spatially varying local
pairing amplitudes. This aspect was previously proven suc-
cessful in describing salient features of the LDOS gap modu-
lations measured by STM at T�Tc.

33,79 Specifically, it repro-
duces the presence of sharp coherence peaks in small gap
regions80,81 and the granular transition through Tc observed
by Gomes et al.26,82 It is an interesting future study to extend
the present model to include more realistic disorder configu-
rations and determine whether the spatially resolved LDOS
is in further agreement with STM data. In the superconduct-
ing state we have seen that the low-energy LDOS is roughly
constant �in space� within this approach but it is known that
correlations which penalize charge fluctuations will further
stabilize nodal LDOS universality.83,84 Also it will be inter-
esting to see whether the present approach can reproduce the
k-space dichotomy seen by Fourier-transformed STM maps
between the low- and high-energy momenta.38 In addition an
essential aspect of the model is that the antinodal “stripe”
states are localized by disorder in the phase of the local pair
potential. An interesting question is whether similar localiza-
tion may perhaps more realistically be caused by stripe
density-wave disorder.

Lastly, since the present model assumes SDW order it
includes per construction local moments which, as shown
recently, are present even in the magnetic response of the
BSCCO materials.13 The overall hour-glass neutron response

is therefore fully compatible with the present model even
though one may have to include glassy disorder and/or soft
fluctuations to reproduce details of the measured low-energy
magnetic fluctuations.

VI. CONCLUSIONS

We presented a phenomenological model for the
pseudogap state consisting of stripe spin- and charge-
density-wave order with phase-decoupled on-stripe singlet
pairing. This phase is characterized by extended states giving
rise to a nodal hole pocket and gapped antinodal states that
are localized transverse to the stripes. The spectral function
exhibits particle-hole symmetry characteristic of a pairing
gap in the antinodal region whereas in the near-nodal region
just outside the hole pocket the gap is due to stripe order and
does not display particle-hole symmetry. The nodal disper-
sion has the appearance of a normal metal at the Fermi level
but contains a kink and broadening below the pseudogap
energy scale. The spatially averaged DOS has a gap at the
Fermi level and is also roughly particle-hole symmetric in
the pseudogap state even though a small shift arising from
the nodal band may be observable. Finally we also discussed
a superconducting state coexisting with the pseudogap where
the nodal pocket becomes gapped. Here we find a character-
istic subgap peak in the DOS and a coherent pair density
with most of the weight in the nodal region.

After the submission of this work a new ARPES study of
the pseudogap state in underdoped Bi2201 appeared.85 An
extended temperature regime ranging from above the
pseudogap transition T� to below the superconducting tran-
sition was studied and found a conspicuous shift of the anti-
nodal gap minimum momentum in the pseudogap state com-
pared to kF above T� as well as an unexpected additional
spectral broadening in the superconducting state. The ob-
served shift suggests that the antinodal pseudogap is not �ex-
clusively� a pairing gap. In light of this new ARPES data we
realized that these qualitative features were already present
in the model considered in this paper. We thus present an
additional Fig. 13 using our earlier calculations showing a
comparison between antinodal spectral weight cuts for the
bare-band structure �modeling the region T�T��, the

FIG. 13. �Color online� Antinodal spectral weight cut �1 in Fig. 2�, for �a� bare-band structure, m=
d=
h=0, �b� pseudogap state m
= t /3 and 
d= t /4, and �c� superconducting state m= t /3, 
d= t /4, and 
h=0.1t as discussed in the text. ��b� is identical to Fig. 4c1.�
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pseudogap state, and superconducting state. There is a shift
of the putative kF �turning point of coherent dispersion� in
the pseudogap state compared to kF from the bare band struc-
ture, which is due to the stripe order. There is also a broad-
ening of the spectral weight in the superconducting state,
which is related to the interplay between phase-coherent
zero-momentum pairing and the local incoherent on-stripe
pairing. The details of this broadening and the generics of the
stripe-induced shift of kF will be studied in more detail in
subsequent work.
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